Algebra II Scope and Sequence

Domain	Quarter 1 46 Days	$\begin{gathered} \hline \text { Quarter } 2 \\ 42 \text { Days } \\ \hline \end{gathered}$	$\begin{gathered} \hline \text { Quarter } 3 \\ 46 \text { Days } \\ \hline \end{gathered}$	$\begin{gathered} \text { Quarter } 4 \\ \text { 47 Days } \\ \hline \end{gathered}$
	Content	Content	Content	Content
Investigations and Functions F-IF Solving and Intersections SSE Trigonometric and Functions F-TF Equivalent Forms S-IC Using Probability in Making Decisions S-MD	F-IF. 4 - For a function that models a relationship between two quantities, interpret key features of graphs and tables in terms of the quantities, and sketch graphs showing key features given a verbal description of the relationship. Key features include: intercepts; intervals where the function is increasing, decreasing, positive, or negative; relative maximums and minimums; symmetries; end behavior; and periodicity.* F-IF. 5 - Relate the domain of a function to its graph and, where applicable, to the quantitative relationship it describes. For example, if the function $h(n)$ gives the number of person-hours it takes to assemble n engines in a factory, then the positive integers would be an appropriate domain for the function.* F-IF.7b - Graph functions expressed symbolically and show key features of the graph, by hand in simple cases and using technology for more complicated cases.* b. Graph square root, cube root, and piecewise-defined functions, including step functions and absolute value	A-SSE.1b - Interpret expressions that represent a quantity in terms of its context.* b. Interpret complicated expressions by viewing one or more of their parts as a single entity. For example, interpret $P(1+r) n$ as the product of P and a factor not depending on P. A-SSE. 2 - Use the structure of an expression to identify ways to rewrite it. For example, see $\times 4$ y4 as (x2)2-(y2)2, thus recognizing it as a difference of squares that can be factored as $(x 2-y 2)(x 2+y 2)$. A-REI. 2 - Solve simple rational and radical equations in one variable, and give examples showing how extraneous solutions may arise. A.REI. 11 - Explain why the x-coordinates of the points where the graphs of the equations $y=$ $f(x)$ and $y=g(x)$ intersect are the solutions of the equation $f(x)=$ $g(x)$; find the solutions approximately, e.g., using technology to graph the functions, make tables of values, or find successive approximations. Include cases where $f(x)$ and/or $g(x)$ are linear, polynomial, rational, absolute value,	F-TF. 1 - Understand radian measure of an angle as the length of the arc on the unit circle subtended by the angle. F-TF. 2 - Explain how the unit circle in the coordinate plane enables the extension of trigonometric functions to all real numbers, interpreted as radian measures of angles traversed counterclockwise around the unit circle. F-TF. 5 - Choose trigonometric functions to model periodic phenomena with specified amplitude, frequency, and midline.* F-TF. 8 - Prove the Pythagorean identity sin2 $(\theta)+\cos 2(\theta)=1$ and use it to find $\sin (\theta), \cos (\theta)$, or $\tan (\theta)$ given $\sin (\theta), \cos (\theta)$, or $\tan (\theta)$ and the quadrant of the angle. F-IF.7e - Graph functions expressed symbolically and show key features of the graph, by hand in simple cases and using technology for more complicated	S-IC. 1 - Understand statistics as a process for making inferences about population parameters based on a random sample from that population. S-IC. 2 - Decide if a specified model is consistent with results from a given data generating process, e.g., using simulation. For example, a model says a spinning coin falls heads up with probability 0.5 . Would a result of 5 tails in a row cause you to question the model? S-IC. 4 - Use data from a sample survey to estimate a population mean or proportion; develop a margin of error through the use of simulation models for random sampling. S-IC. 5 - Use data from a randomized experiment to compare two treatments; use simulations to decide if differences between parameters are significant. S-IC. 6 - Evaluate reports based on data. S-MD.6+ - (+) Use probabilities to make fair decisions (e.g., drawing by lots, using a random number generator). S-MD.7+ - (+) Analyze decisions and

	functions. F-IF.9 - Compare properties of two functions each represented in a different way (algebraically, graphically, numerically in tables, or by verbal descriptions). For example, given a graph of one quadratic function and an algebraic expression for another, say which has the larger maximum. A-CED.2 - Create equations in two or more variables to represent relationships between quantities; graph equations on coordinate axes with labels and scales. A-ssE.1a - Interpret expressions that represent a quantity in terms of its context.* a. Interpret parts of an expression, such as terms, factors, and coefficients. A-SSE.1b - Interpret expressions that represent a quantity in terms of its context.*
b. Interpret complicated	
expressions by viewing one or	
more of their parts as a single	
entity. For example, interpret	
P(1+r)n as the product of P and	
a factor not depending on P.	
F-IF.4 - For a function that	
models a relationship between	
two quantities, interpret key	
features of graphs and tables in	
terms of the quantities, and	
sketch graphs showing key	
features given a verbal	
description of the relationship.	
Key features include:	
intercepts; intervals where the	

exponential, and logarithmic functions.

A-CED. 2 - Create equations in two or more variables to represent relationships between quantities; graph equations on coordinate axes with labels and scales.

A-CED. 3 - Represent constraints by equations or inequalities, and by systems of equations and/or inequalities, and interpret solutions as viable or nonviable options in a modeling context. For example, represent inequalities describing nutritional and cost constraints on combinations of different foods.

F-IF. 5 - Relate the domain of a function to its graph and, where applicable, to the quantitative relationship it describes. For example, if the function $h(n)$ gives the number of person-hours it takes to assemble n engines in a factory, then the positive integers would be an appropriate domain for the function.*
F-BF.1b - Write a function that describes a relationship between two quantities.*
b. Combine standard function types using arithmetic operations. For example, build a function that models the temperature of a cooling body by adding a constant function to a decaying
exponential, and relate these functions to the model.

e. Graph exponential and logarithmic functions,

 showing intercepts and end behavior, and trigonometric functions, showing period midline, and amplitude.F-IF. 9 - Compare properties of two functions each represented in a different way (algebraically, graphically, numerically in tables, or by verbal descriptions). For example, given a graph of one quadratic function and an algebraic expression for another, say which has the larger maximum.

F-BF. 3 - Identify the effect on the graph of replacing $\mathrm{f}(\mathrm{x})$ by $\mathrm{f}(\mathrm{x})+\mathrm{k}, \mathrm{kf} \mathrm{f}(\mathrm{x}), \mathrm{f}(\mathrm{kx})$, and $f(x+k)$ for specific values of k (both positive and negative); find the value of k given the graphs. Experiment with cases and illustrate an explanation of the effects on the graph using technology. Include recognizing even and odd functions from their graphs and algebraic expressions for them.
A.APR. 2 - Know and apply the Remainder Theorem: For a polynomial $p(x)$ and a number a, the remainder on division by $x-a$ is $p(a)$, so $p(a)=0$ if and only if ($x-a$) is a factor of $p(x)$.

F-BF. 3 - . Identify the effect on the
A-APR. 3 - Identify zeros of
strategies using probability concepts (e.g., product testing, medical testing, pulling a hockey goalie at the end of a game).

F-TF. 5 - Choose trigonometric functions to model periodic phenomena with specified amplitude, frequency, and midline.*

F-TF.6+ - (+) Understand that restricting a trigonometric function to a domain on which it is always increasing or always decreasing allows its inverse to be constructed.

F-TF.9+ - (+) Prove the addition and subtraction formulas for sine, cosine, and tangent and use them to solve problems.

F-IF.7e - Graph functions expressed symbolically and show key features of the graph, by hand in simple cases and using technology for more complicated cases.*
e. Graph exponential and logarithmic functions, showing intercepts and end behavior, and trigonometric functions, showing period, midline, and amplitude.

F-IF. 8 - Write a function defined by an expression in different but equivalent forms to reveal and explain different properties of the function.
a. Use the process of factoring and completing the square in a quadratic function to show zeros, extreme values, and symmetry of the graph, and interpret these in terms of a context.

	F-IF. 9 - Compare properties of two functions each represented in a different way (algebraically, graphically, numerically in tables, or by verbal descriptions). For example, given a graph of one quadratic function and an algebraic expression for another, say which has the larger maximum. F-BF. 3 - Identify the effect on the graph of replacing $f(x)$ by $f(x)$ $+k, k f(x), f(k x)$, and $f(x+k)$ for specific values of k (both positive and negative); find the value of k given the graphs. Experiment with cases and illustrate an explanation of the effects on the graph using technology. Include recognizing even and odd functions from their graphs and algebraic expressions for them. A-APR. 1 - Understand that polynomials form a system analogous to the integers, namely, they are closed under the operations of addition, subtraction, and multiplication; add, subtract, and multiply polynomials. A-APR. 4 - Prove polynomial identities and use them to describe numerical relationships. For example, the polynomial identity $(x 2+y 2) 2=$ ($x 2-y 2$) $2+(2 x y) 2$ can be used to generate Pythagorean triples. A-APR.7+ - (+) Understand that rational expressions form a	for the function. * F-IF.7e - Graph functions expressed symbolically and show key features of the graph, by hand in simple cases and using technology for more complicated cases.* e. Graph exponential and logarithmic functions, showing intercepts and end behavior, and trigonometric functions, showing period, midline, and amplitude. F-IF. 8 - Write a function defined by an expression in different but equivalent forms to reveal and explain different properties of the function. a. Use the process of factoring and completing the square in a quadratic function to show zeros, extreme values, and symmetry of the graph, and interpret these in terms of a context. b. Use the properties of exponents to interpret expressions for exponential functions. For example, identify percent rate of change in functions such as $y=(1.02) t, y=$ (0.97)t, $y=(1.01) 12 t, y=$ (1.2)t/10, and classify them as representing exponential growth or decay. F-IF. 9 - Compare properties of two functions each represented in a different way (algebraically, graphically, numerically in tables, or by verbal descriptions). For example, given a graph of one quadratic function and an algebraic expression for another,	positive, or negative; relative maximums and minimums; symmetries; end behavior; and periodicity.* F-IF. 5 - Relate the domain of a function to its graph and, where applicable, to the quantitative relationship it describes. For example, if the function $h(n)$ gives the number of person-hours it takes to assemble n engines in a factory, then the positive integers would be an appropriate domain for the function.* F-IF.7c - Graph functions expressed symbolically and show key features of the graph, by hand in simple cases and using technology for more complicated cases.* c. Graph polynomial functions, identifying zeros when suitable factorizations are available, and showing end behavior. N-CN. 1 - Know there is a complex number i such that i $2=-1$, and every complex number has the form a + bi with a and b real. N-CN. 2 - Use the relation i 2 = -1 and the commutative, associative, and distributive properties to add, subtract, and multiply complex numbers.	

		functions to the model. F-IF.7e - Graph functions expressed symbolically and show key features of the graph, by hand in simple cases and using technology for more complicated cases.* e. Graph exponential and logarithmic functions, showing intercepts and end behavior, and trigonometric functions, showing period, midline, and amplitude.	S-IC. 4 - Use data from a sample survey to estimate a population mean or proportion; develop a margin of error through the use of simulation models for random sampling. S-IC. 6 - Evaluate reports based on data. S-ID. 4 - Use the mean and standard deviation of a data set to fit it to a normal distribution and to estimate population percentages. Recognize that there are data sets for which such a procedure is not appropriate. Use calculators, spreadsheets, and tables to estimate areas under the normal curve. A-SSE.1b - Interpret expressions that represent a quantity in terms of its context.* b. Interpret complicated expressions by viewing one or more of their parts as a single entity. For example, interpret $\mathrm{P}(1+r) \mathrm{n}$ as the product of P and a factor not depending on P. A-SSE. 2 - Use the structure of an expression to identify ways to rewrite it. For example, see $\mathrm{x} 4-\mathrm{y} 4$ as (x2)2-(y2)2, thus recognizing it as a difference of squares that can be factored as (x2-y2	

			$)(x 2+y 2) .$ A-SSE. 4 - Derive the formula for the sum of a finite geometric series (when the common ratio is not 1), and use the formula to solve problems. For example, calculate mortgage payments.* A-APR. 4 - Prove polynomial identities and use them to describe numerical relationships. For example, the polynomial identity ($\mathrm{x} 2+$ y2) 2 = ($x 2-y 2$)2 $+(2 x y) 2$ can be used to generate Pythagorean triples. A-APR.5+ - (+) Know and apply the Binomial Theorem for the expansion of $(x+y) n$ in powers of x and y for a positive integer n, where x and y are any numbers, with coefficients determined for example by Pascal's Triangle. F-IF.8b - Write a function defined by an expression in different but equivalent forms to reveal and explain different properties of the function. b. Use the properties of exponents to interpret expressions for exponential functions. For example, identify percent rate of change in functions such as $y=(1.02) t, y=(0.97) t, y=$ (1.01)12t, $y=(1.2) t / 10$, and	

			classify them as representing exponential growth or decay. F-LE. 4 - For exponential models, express as a logarithm the solution to abct $=\mathrm{d}$ where a, c, and d are numbers and the base b is 2,10 , or e; evaluate the logarithm using technology.	
Resources	CPM (College Preparatory Math) ODE Model Curriculum GAISE model framework	CPM (College Preparatory Math) ODE Model Curriculum GAISE model framework	CPM (College Preparatory Math) ODE Model Curriculum GAISE model framework	CPM (College Preparatory Math) ODE Model Curriculum GAISE model framework
Notes:	Mathematical Practices 1. Make sense of problems and persevere in solving them. 2. Reason abstractly and quantitatively. 3. Construct viable arguments and critique the reasoning of others. 4. Model with mathematics. 5. Use appropriate tools strategically. 6. Attend to precision. 7. Look for and make use of structure. 8. Look for and express regularity in repeated reasoning.			

